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Analysis of Current Crowding Effects in Multiturn
Spiral Inductors
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Abstract—The effective trace resistance of a multiturn spiral
inductor operating at high frequencies is known to increase dra-
matically above its dc value, due to proximity effect or current
crowding. This phenomenon, which dominates resistance increases
due to skin effect, is difficult to analyze precisely and has generally
required electromagnetic simulation for quantitative assessment.
Current crowding is studied in this paper through approximate an-
alytical modeling, and first-order expressions are derived for pre-
dicting resistance as a function of frequency. The results are vali-
dated through comparisons with electromagnetic simulations and
compared with measured data taken from a spiral inductor imple-
mented in a silicon-on-sapphire process.

Index Terms—Current crowding, current distribution, induc-
tors, proximity effect, spiral inductor.

I. BACKGROUND AND INTRODUCTION

SPIRAL inductors implemented in silicon processes suffer
from several power dissipation mechanisms, leading

to poor inductor quality factors. The mechanisms include
losses from eddy currents circulating below the spiral

in the semiconducting substrate, from displacement currents
conducted through the turn-to-substrate capacitances and the
underlying substrate material, and from the primary inductor
current flowing through the thin metal traces of the spiral
itself [1]–[4]. In CMOS technologies, the heaviest losses result
from eddy currents in the low resistivity substrate (e.g., 0.015

-cm), often dominating and masking the effects of the latter
two mechanisms and limiting to values in the range of
three to four [3], [4]. Spirals built in bipolar processes (or
bipolar-derived BiCMOS) often exhibit higher values (five
to ten) due to relatively high substrate resistivities (e.g., 10–30

-cm) which reduce eddy currents to negligible values, but
may still suffer from significant losses from displacement
currents conducted through turn-to-substrate capacitances [3],
[5]. These losses can be mitigated by the introduction of a
patterned ground shield [6], [7] or by an unpatterned shield
of the proper sheet resistance placed below the inductor [8],
although at the price of reduced self-resonant frequency.

The best approach to producing high-quality inductors in sil-
icon however, involves etching away the offending semicon-
ducting material below the spiral [9], using a thick oxide layer
to separate the spiral from the substrate [10], [11], using a very
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Fig. 1. General form of resistance andQ for spiral suffering from current
crowding.

high resistivity bulk [12], or using an insulating substrate such
as sapphire [13]. In such cases, inductors of 20 and above
have been reported, with the highest values found in single turn
spirals with values of less than 5 nH.

Unfortunately, for spirals with higher inductances, multiple
turns are required and often falls far short of the value that
would be predicted from a simple calculation of inductor reac-
tance divided by dc series resistance. The limitation oncan be
traced to an increase in effective resistance of the metal traces at
high frequencies due to skin effect and current crowding [14],
[15]. For frequencies below about 2 GHz, skin effects are rela-
tively small in most processes since the trace metal thickness is
typically less than or equal to the skin depth. Above 2 GHz, re-
sistance increases associated with skin-effect grow slowly, ap-
proaching an asymptote proportional to the the square root of
frequency. In contrast, current crowding is a strong function
of frequency, resulting in resistance increases at a higher than
linear rate and a function that is concave downward, as shown
in Fig. 1.

Although the problem of current crowding is well known and
the general mechanisms involved have been cited and eluci-
dated in several papers [14]–[16], little information is available
in the literature to quantitatively predict its magnitude without
resorting to numerical simulations [16].

In this paper, we develop a first-order analytical model for
the major current crowding mechanisms and derive usefulap-
proximateformulas for predicting increases in effective series
with frequency. Our goal is to provide a framework for under-
standing the losses involved and to develop simple expressions
that can be used to guide explorations of the spiral inductor ge-
ometry design space without the need for repeated simulations
and/or fabrication and characterization of many spirals. While
some steps in the analysis currently rely on empirical expres-
sions (such as that for the normalfield entering the traces) and
others involve simple linearized approximations to higher order
functions, the broad framework remains faithful to the physics
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Fig. 2. Illustration of current crowding.

involved, and the predictions made by the model agree well with
simulated and measured results.

II. M ODEL DEVELOPMENT

The basic mechanism behind current crowding typically cited
in the literature is illustrated in Fig. 2. As the field of adja-
cent turns in the inductor penetrates a trace normal to its surface,
eddy currents are produced within the trace that add to the in-
ductor’s excitation current on the inside trace edge (nearest the
center of the spiral) and subtract from the excitation current on
the outside edge. This constricts the current, increasing the ef-
fective resistance above the value that would exist for a uniform
flow throughout the trace width.

An analysis of this effect requires a sequence of steps that will
be undertaken in the following sections, including:

1) developing an expression for the normalfield pene-
trating the spiral traces;

2) calculating the eddy current magnitude (and phase) pro-
duced in the traces;

3) computing the power losses within the traces due to
the addition of the eddy and excitation currents flowing
through the nonzero trace resistance;

4) comparing this power loss with that expected in the ab-
sence of crowding to calculate an effective resistance in-
crease.

A. Normal Field Distribution

Arguably, the most difficult analytical step is derivation of
the -field distribution within the inductor turns. For a circular
spiral, a closed form should be possible but would be difficult
to work with in subsequent steps. For the more common case
of a square spiral, it is doubtful that an exact closed-form result
could be obtained with any reasonable amount of effort.

In this paper, we approximate the field distribution by ap-
plying the following procedure.

1) Solve for the low-frequency normal field inside and
outside a square filamental conductor.

2) Represent the distributed current flow in the actual in-
ductor shown in Fig. 3(a) by a collection of filaments as
shown in Fig. 3(b), summing the fields from all filaments
of all turns.

Fig. 3. Spiral geometry and filamentary representation for approximating
distributed current.

Fig. 4. CalculatedB-field distribution at dc for six-turn, 350-�m square spiral.

3) Develop an equation for the field that approximates the
calculated field and is suitable for use in subsequent anal-
ysis.

4) Apply variational principles to address the field redistri-
bution that occurs at high frequencies (discussed in Sec-
tion II-C).

A numerically computed result for the normal field of a
six-turn, 350- m spiral with 18- m-wide traces, conducting a
dc current of 1 A distributed across ten filaments is shown in
Fig. 4. The horizontal axis here represents distance from the
center of the spiral along the cut-line shown in Fig. 3, while the
vertical axis shows in SI units.

Note that while the field distribution is complex and varies
nonlinearly in the region around the trace edges, the overall
shape is a linear increase from a negative value on the outside
turn to a positive peak on the inside turn. In the remainder of
this paper, we recognize this as a general behavior of multiturn
spirals and adopt the following simplified expression for the av-
erage field in turn (numbering from at the outside
turn):

(1)

Here, is the total number of turns, is the field at the
innermost turn ( ), and is the turn number where the field
falls to zero and reverses direction.

The magnitude of and the value of the parameter de-
pend on the spiral geometry and the excitation current. The fol-
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lowing expression for has been found to be reasonably ac-
curate for a variety of geometries:

(2)

Here, is the permeability of free space,is the turn pitch
(see Fig. 3), and is the excitation current. Values for de-
pend on the degree of spiral fill-in at the center, but a good
estimate for typical multiturn geometries with moderate fill is

.
It should be noted that the expression in (2) is for the region

defined by the cut-line shown in Fig. 3. A cut-line through the
trace corners yields somewhat higher fields due to proximity
to the two sides that meet. This complication will be consid-
ered a second-order effect and ignored in subsequent analysis
(although it will be seen again in plots of current density in Sec-
tion III-B).

B. Eddy Current Magnitude and Phase

Fig. 2, shown previously, suggests that eddy currents add to
the spiral’s excitation current on the inside edge of a trace and
subtract from it on the outside edge. However, careful considera-
tion reveals that the situation is somewhat more complex. At low
frequencies, the inducedfield responsible for the eddy current
production follows Faraday’s law, expressed in point form for
the segment of the loop shown in Fig. 2 as

(3)

Thus, the field and the resulting eddy currents are actually
in quadrature with the excitation current, and it is possible for
the current magnitude to increase onbothsides of a trace.

Integration of (3) with respect to yields an field and re-
sulting eddy current density within a trace of width ,
as illustrated in Fig. 5. Note that a constant of integration has
been applied to return the average of the eddy current to zero,
so that the total current in the trace remains equal to the current

applied at the spiral’s terminals.1

To simplify subsequent expressions in the analysis, we will
approximate as constant across trace, as illustrated by
the dotted line, yielding a first-order expression forof the
form

for (4)

and an eddy current density at the trace edges with a magnitude
of

(5)

where is the conductivity of the trace metal. Taking the ratio
of (5) to the excitation current density in the trace, which is as-

1The average current in the traces equals the terminal excitation current for
frequencies well below the spiral’s self-resonant frequency (SRF). As the SRF
is approached, some modifications would be required. Thus, the following anal-
ysis is limited to use below the SRF.

Fig. 5. Excitation current,B field, and inducedE field and eddy currents
profiles within trace.

sumed to have a thickness, yields

(6)

which can be combined with (1) and (2) to yield

(7)

This expression is maximum at the innermost turn ( )
and, if set to one for this case, can be used to find the frequency

at which the current crowding begins to become significant

(8)

Here, the trace’s sheet resistance has been used in
place of 1 to make the expression more user friendly to
the IC designer.

Evaluation of (8) with and set to representative values
of 18 and 20 m and with set to 0.02 / reveals that the
onset of current crowding can easily occur at frequencies below
500 MHz. The expression also points to the fact that the onset of
eddy currents occurs at even lower frequencies as the metal re-
sistance decreases. However, it should not be concluded that this
will negate the advantage of using lower sheet resistance. Equa-
tion (8) only shows when the resistance of the spiral will start
to increase. Lower should still yield improvements in
proportion to the reduction in for frequencies up to ap-
proximately and somewhat less improvement at higher
frequencies.

C. Field Redistribution at High Frequencies

The expressions derived above assume that thefield distri-
bution within the inductor remains unchanged from the low-fre-
quency distribution assumed in (1) and Fig. 5. At high frequen-
cies, this assumption must be reexamined.

For a multiturn spiral, the field at turn is the superposition
of fields from all turns. Thus, while eddy currents flowing in ad-
jacent turns will produce some modification to , the field
contributions from equal and opposite eddy currents along the
edges of other turns will largely cancel at turn, and the net con-
tribution from all turns will be relatively unchanged at low fre-



34 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

Fig. 6. Lumped element model of single eddy current “loop” of Fig. 2.

quencies. For frequencies well above , however, the pres-
ence of large eddy currents along the edges of adjacent turns,
and especially along the edges of turnitself, can significantly
change the field in turn. To illustrate this, and to approximately
quantify the effect, refer to the circuit model of Fig. 6.

Here, represents the voltage induced in an eddy loop
within turn by the field produced from the complete
spiral. represents the average eddy current along the trace
edge and represents the net resistance through which this
current flows. The effect of field redistribution within the turn
is modeled by which develops back electromotive force,
limiting at high frequencies and changing the phase of the
eddy currents from quadrature to in-phase with when the
reactance of sufficiently exceeds .

To roughly quantify these effects, we note from (4) that eddy
currents are concentrated near the edges of the trace. We repre-
sent the current on each edge approximately by a uniform cur-
rent [equal to that given in (5)] flowing within the outer 25% of
the trace width. Approximate expressions for and
can then be adapted from transmission line and sheet resistance
formulas as2

(9)

(10)

where is the length of the eddy loop in thedirection. Taking
the ratio of to then gives an estimate for the fre-
quency where the limiting of eddy currents reaches 3 dB and the
phase relationship of to reaches 45

(11)

This is approximately four to six times given in (8) for
the case of spirals with . As an example, for a 350-m
six-turn 10-nH inductor with a trace width of 18m and a pitch
of 20 m, and / , Gr/s (480 MHz),
and Gr/s (2.5 GHz). Between these frequencies,
eddy currents steadily build with frequency and have an approx-
imately quadrature phase relationship, as previously described.

As a final note, we recognize that the field distribution given
by (1) and (2) will also be modified when the spiral approaches
self-resonance. In this case, the excitation current along the
spiral will not remain in-phase with the terminal currents, and
appropriate modifications will be required in (1) and (2). This

2The expression in (9) is the value ofL for a two-wire transmission line and
is not strictly applicable here. However, it provides a useful first-order estimate
to the relativeley complex situation under construction.

complication will be treated in subsequent work and will not
be addressed here.

D. Estimation of Resistance Increases with Frequency

Previous results can now be combined to approximate the ef-
fective series resistance of the spiral versus frequency. This
will be done by setting equal to the power dissipated. To
simplify the analysis, we shall assume that the frequency of op-
eration is below so that and can be assumed
to be in phase quadrature and the power dissipation from each
can be computed independently.

The power dissipated in theth turn is then

(12)

where is the dc resistance of turnand is the resis-
tance through which the eddy current flows in turn. can
be found from the sheet resistance and the length of the
turn as

(13)

while the eddy current and the resistance through
which it flows can be estimated using the approach outlined in
the previous section as

(14)

(15)

and where is the current given in (5) and is the trace
thickness.

Combining (12)–(15) with (1), (2), and (5) then gives

(16)
which can be combined with (8) and written in terms of
(after replacing by 1 ) as:

(17)

Equation (17) provides several useful insights. For example,
the term in brackets represents the factor by which the resistance
of turn is increased due to eddy currents. For the innermost
turn, this resistance doubles by the time the frequency of op-
eration reaches . For other turns, the doubling is
delayed due to the weaker fields. In addition, the effective resis-
tance for all turns, and hence for the complete inductor, follows
a quadratic curve with increasing frequency (up to the vicinity
of ).

To find an expression for the total spiral resistance, (17)
can be summed overand the result equated to to give

(18)

where is the spiral’s series resistance at dc and the terms
within the summation are geometry dependent. A plot of this
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Fig. 7. Plot of sum term in (18) versus number of turns for spiral with 2/3
fill-in.

sum divided by for the typical case of a spiral with the
inner third unfilled is shown in Fig. 7, from which a nominal
value of 0.2 can be taken to yield the following result for
simple rough estimates of

(19)

III. M ODEL VALIDATION

The quantitative predictions of current crowding offered by
(8), (11), and (19) are compared in this section with measured
data and electromagnetic simulation results to assess the va-
lidity and accuracy of the analytic model. The measured data
used in the validation is taken from a six-turn spiral fabricated
in a silicon-on-sapphire (SOS) process. The data are fit to a
lumped-element circuit model to extract the spiral’s series re-
sistance versus frequency. They are then compared against the
analytic model’s predictions of a 10% increase in resistance at

, a quadratic rise in with frequency, and a leveling out of
series resistance in the vicinity of . Data generated with a
commercial electromagnetic simulator (Agilent EEsof Momen-
turm) are then used to assess predictions of these behaviors over
a range of widths, pitches, turns, and sheet resistance values. Fi-
nally, simulated plots of current density within the spiral traces
are examined to check the field distribution of (1), the eddy
current distribution of Fig. 5, and the eddy current to excitation
current phase relationships predicted by the model of Fig. 6.

A. Comparison with Measured Results

Raw S11 data taken from a 9.5-nH inductor using Cas-
cade Microtech coplanar waveguide probes connected to an
HP8753A network analyzer are shown in Fig. 8(a). The mea-
surements are from a traditional square spiral with dimensions
of m, , m, and

m, fabricated in an SOS process with metal sheet resistance
0.028 / (representing the effective value after

stacking the three available metal layers). This data were then
fit to the model shown in Fig. 8(b) [13] to separate the actual
series inductance and resistance from the apparent values
created by parallel capacitance between turns and within the
probe pad structure.

The graphs in Fig. 9(a) and (b) show the apparentand
values computed directly from S11 and the values found after
fitting to the model of Fig. 8(b), respectively. The apparent

value of Fig. 9(a) is computed as the imaginary part of the

(a)

(b)

Fig. 8. (a) S11 measurements and (b) model used to extract seriesR versus
frequency.

measured impedance divided by 2 , while the apparent
value represents the real part ofdirectly. Both quantities rise
with frequency as self-resonance is approached on the right
side of the Smith chart. The resistance and inductance shown
in Fig. 9(b) represent and in the lumped-element model
of Fig. 8(b) after is found and fixed at a constant value. The
virtually constant value of versus frequency shown confirms
the fit of the model to the data throughout the frequency range.
Values for inductor quality factor (computed as ) are
also plotted in both graphs.

Inspection of Fig. 9(b) shows good agreement with the pre-
dictions of the analytic model developed in previous sections.
Equation (8) predicts a critical frequency of 710 MHz for this
spiral, while (19) predicts that the resistance will up by 10% at
this frequency and rise at a quadratic rate. Fig. 9(b) shows a re-
sistance increase of 10% at approximately 700 MHz, and an in-
crease of 40% at approximately 1500 MHz, verifying both pre-
dictions. Equation (11) and the theory surrounding it predict that
resistance increase will begin to level out in the neighborhood
of 3.2 GHz, while the measured results show that the quadratic
increase in resistance has slowed to linear by 2.9 GHz, the upper
frequency range of measurement.

B. Comparison with Simulation Results

To validate the analytic model over a range of values for,
, , and , electromagnetic simulations were run for the

following cases (all have m):



36 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 49, NO. 1, JANUARY 2001

(a)

(b)

Fig. 9. Measured parameters (a) before and (b) after fitting to the model of
Fig. 8(b).

Case 1) , m, m, and
/ [9.5 nH]

Case 2) Same as Case 1), but with
/ [9.5 nH]

Case 3) Same as Case 1), but with decreased to 12
m [9.4 nH]

Case 4) , m, m, and
/ [2.6 nH]

Case 5) Same as Case 4), but with increased to 0.056
/ [2.6 nH]

Case 6) Case 6: , m, m,
and / [35 nH]

For each case, the simulated S11 values were fit to the model
of Fig. 8(b) and the series resistance versus frequency was found
as described earlier. The results, expressed as resistance at fre-
quency divided by resistance at dc, are shown in Fig. 10, and
the predictions of critical frequency and limiting frequency from
(8) and (11) for each case are shown in Table I. The values of
critical frequency from Table I agree with the intercept points
of the line , as predicted by (19). In addition, all
curves show the expected square-law behavior of resistance, and
evidence of limiting at high frequency can be seen.

There is some quantitative discrepancy, however, between the
measured results shown previously in Fig. 9(b) and the data for
Case 1) (which is designed to match the measured spiral) and

Fig. 10. Spiral resistance divided by dc value for six different cases.

TABLE I
PREDICTED VALUES OF CRITICAL FREQUENCY AND LIMITING

FREQUENCY FORSIX CASES

between the frequency of limiting predicted in Table I and the
inflection points shown in the plots of Fig. 10. The former is be-
lieved to be due to stacking of metal layers to achieve a low com-
posite resistance in the measured spiral (with some minor con-
tribution also due to skin effects, which are not included in the
simulations). This behavior of stacked-metal spirals has been
previously observed in the literature [11]. The latter problem is
believed to be due to approximations made in deriving (11) and
indicates that further work is needed to provide good quantita-
tive modeling of resistance increase at frequencies well above

.
Finally, the general behavior of eddy current development and

the phase relationships assumed in deriving (8), (11), and (19)
were checked by plotting current density within the spiral traces.
Fig. 11 shows the current magnitude in the spiral traces at two
different phases of the excitation current, with lighter areas rep-
resenting larger instantaneous magnitudes. Fig. 11(a) shows the
case for the excitation phase that results in a peak value on the
inside edge of the inner trace, while Fig. 11(b) shows the case
for the phase that results in zero instantaneous current at this
same location. The meshing used in the electromagnetic simu-
lations can be seen in both.

From Fig. 11(a), the effects of the field distribution shown
previously in Fig. 4 can be seen. For the inner turns, the field,
and hence the eddy currents, are maximum on the inside of the
trace, while for the the outer turn, the field is reversed and the
eddy current maximum occurs on the outside of the trace. As ex-
pected from the assumedfield distribution of (1), the general
progression of eddy currents is a linear decrease for turns far-
ther from the center of the spiral falling to approximately zero
in the neighborhood of turn 2 to 3, and then reversing direction
(maximum current crowding on outside edge of outside turn).
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(a)

(b)

Fig. 11. Current density magnitudes within inductor traces at! at (a)
excitation phase resulting in peak value on inside of inner turn and (b) at phase
resulting in zero instantaneous current on inside of inner turn.

A comparison of Fig. 11(a) and (b) also agrees with the con-
clusion that eddy currents flow in opposite directions on the two
sides of the trace and are approximately in quadrature with the
excitation current at lower frequencies. If the currents flowed
in-phase with the excitation current, then the plot of Fig. 11(b)
would be uniformly dark, indicating zero instantaneous current
at all points simultaneously. Instead, the lighter shading on the
outside edge of the inner turn trace shows significant current at
this point, indicating that the eddy currents on the two edges
are not in-phase (or antiphase) at this frequency. The fact that
the outside edge does not reach the same peak magnitude as the
inside edge at this phase is attributed to the increasingfield
across the trace shown in Figs. 3 and 4—a factor that was suc-
cessfully abstracted out of the model to keep the derivation of
(4)–(8) and the result in (19) simplified.3

3Additional plots of this type, cycling through 16 phase points, showed that
the outside edge does peak approximately 90� from the inside edge peak (as
would be suggested by the theory at! whereJ = J ), while plots at
high frequency (above! ) showed a nearly in-phase relationship, in agree-
ment with the model of Fig. 6.

IV. SUMMARY AND CONCLUSIONS

Previous work with spiral inductors fabricated in tech-
nologies with insulating or very high-resistivity substrates
have shown significant increases in series resistance at high
frequency. This problem is especially severe in inductors used
in low power designs operating at low gigahertz frequencies,
where multiturn spirals with moderate values are needed.
While the general mechanisms behind the current crowding
mechanism responsible are well known, previous authors have
considered the problem too difficult to address analytically, and
no simple theory has been available to help in exploring the
inductor design space. Equations (8), (11), and (19) derived in
this paper provide an approximate analytic model for current
crowding effects. These expressions can be used to obtain
first-order estimates of the frequency at which resistance
increases begin and thus to understand the general quantitative
as well as qualitative form of the increase inwith frequency.

The model’s predictions of and of the square-law in-
crease in have been found to be accurate over a significant
range of values for trace width, pitch, number of turns, and metal
sheet resistance. Prediction of the frequency at which the
increase in resistance slows due to redistribution of the mag-
netic fields within the spiral is less precise, indicating the need
for more detailed modeling of these effects. However, plots of
current density within the spiral traces are in general agreement
with the major features of the theory, suggesting that this effect
may also be accessible to analytical modeling, and that the gen-
eral procedures adopted in this paper should be extendable to
other spiral inductor and transformer geometries.
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